996 resultados para Mayer, Julius Robert, 1814-1878


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, História e Filosofia das Ciências, Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scan von Monochrom-Mikroform

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sources given in foot-notes at beginning of chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

von J. R. Mayer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Published by the Trustees of Williston Seminary, for gratuitous distribution among the Alumni, and other friends of Williston Seminary"--T.p. verso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book is hardcover and inscribed with an illegible signature, dated 1880 and below that is the signature Margaret J. Woodruff. The preface of the book begins, "The present work is designed to fulfil an important purpose in Education - that of bringing clearly into view the leading facts which are supposed to be gained through a long course of instruction. Without proposing to supersede the elementary books usually employed, it offers a certain test of what is presumed to have been previously learned. With such a work in their hands, Schoolmasters, Tutors, Governesses, or Parents, may at once satisfy themselves as to the degree of knowledge on a variety of subjects attained by the young person under their charge, and for whose intellectual culture they feel a special interest." The full text is available in the Brock University Special Collections and Archives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoscopic 3D imaging has become a widely used optical imaging technique to visualize intact biological specimens. Selective plane illumination microscopy (SPIM) visualizes samples up to a centimeter in size with micrometer resolution by 3D data stitching but is limited to fluorescent contrast. Optical projection tomography (OPT) works with fluorescent and nonfluorescent contrasts, but its resolution is limited in large samples. We present a hybrid setup (OPTiSPIM) combining the advantages of each technique. The combination of fluorescent and nonfluorescent high-resolution 3D data into integrated datasets enables a more extensive representation of mesoscopic biological samples. The modular concept of the OPTiSPIM facilitates incorporation of the transmission OPT modality into already established light sheet based imaging setups.